Creating an essay based on a few given topics is a challenging NLP task. Although several effective methods for this problem, topic-to-essay generation, have appeared recently, there is still much room for improvement, especially in terms of the coverage of the given topics and the coherence of the generated text. In this paper, we propose a novel approach called TegFormer which utilizes the Transformer architecture where the encoder is enriched with domain-specific contexts while the decoder is enhanced by a large-scale pre-trained language model. Specifically, a \emph{Topic-Extension} layer capturing the interaction between the given topics and their domain-specific contexts is plugged into the encoder. Since the given topics are usually concise and sparse, such an additional layer can bring more topic-related semantics in to facilitate the subsequent natural language generation. Moreover, an \emph{Embedding-Fusion} module that combines the domain-specific word embeddings learnt from the given corpus and the general-purpose word embeddings provided by a GPT-2 model pre-trained on massive text data is integrated into the decoder. Since GPT-2 is at a much larger scale, it contains a lot more implicit linguistic knowledge which would help the decoder to produce more grammatical and readable text. Extensive experiments have shown that the pieces of text generated by TegFormer have better topic coverage and higher text coherence than those from SOTA topic-to-essay techniques, according to automatic and human evaluations. As revealed by ablation studies, both the Topic-Extension layer and the Embedding-Fusion module contribute substantially to TegFormer's performance advantage.
translated by 谷歌翻译
In this work, we propose an ID-preserving talking head generation framework, which advances previous methods in two aspects. First, as opposed to interpolating from sparse flow, we claim that dense landmarks are crucial to achieving accurate geometry-aware flow fields. Second, inspired by face-swapping methods, we adaptively fuse the source identity during synthesis, so that the network better preserves the key characteristics of the image portrait. Although the proposed model surpasses prior generation fidelity on established benchmarks, to further make the talking head generation qualified for real usage, personalized fine-tuning is usually needed. However, this process is rather computationally demanding that is unaffordable to standard users. To solve this, we propose a fast adaptation model using a meta-learning approach. The learned model can be adapted to a high-quality personalized model as fast as 30 seconds. Last but not the least, a spatial-temporal enhancement module is proposed to improve the fine details while ensuring temporal coherency. Extensive experiments prove the significant superiority of our approach over the state of the arts in both one-shot and personalized settings.
translated by 谷歌翻译
Video super-resolution is one of the most popular tasks on mobile devices, being widely used for an automatic improvement of low-bitrate and low-resolution video streams. While numerous solutions have been proposed for this problem, they are usually quite computationally demanding, demonstrating low FPS rates and power efficiency on mobile devices. In this Mobile AI challenge, we address this problem and propose the participants to design an end-to-end real-time video super-resolution solution for mobile NPUs optimized for low energy consumption. The participants were provided with the REDS training dataset containing video sequences for a 4X video upscaling task. The runtime and power efficiency of all models was evaluated on the powerful MediaTek Dimensity 9000 platform with a dedicated AI processing unit capable of accelerating floating-point and quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 500 FPS rate and 0.2 [Watt / 30 FPS] power consumption. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
尽管变形金刚已成功地从其语言建模起源过渡到基于图像的应用程序,但它们的二次计算复杂性仍然是一个挑战,尤其是对于密集的预测。在本文中,我们提出了一种基于内容的稀疏注意方法,以替代密集的自我注意力,旨在降低计算复杂性,同时保留对远程依赖性建模的能力。具体而言,我们聚集,然后汇总键和值代币,作为减少总代币计数的基于内容的方法。由此产生的聚类序列保留了原始信号的语义多样性,但可以以较低的计算成本进行处理。此外,我们进一步将聚类引导的注意力从单尺度扩展到多尺度,这有利于密集的预测任务。我们标记了提出的变压器体系结构固定,并证明它在各种视觉任务上实现了最新的性能,但计算成本较低,参数较少。例如,我们具有2270万参数的cluster小型模型可在Imagenet上实现83.2 \%TOP-1的精度。源代码和Imagenet模型将公开可用。
translated by 谷歌翻译
联合学习(FL)有助于多个客户共同培训机器学习模型,而无需共享其私人数据。但是,客户的非IID数据给FL带来了艰巨的挑战。现有的个性化方法在很大程度上依赖于将一个完整模型作为基本单元的默认处理方法,而忽略了不同层对客户非IID数据的重要性。在这项工作中,我们提出了一个新的框架,联合模型组成部分自我注意力(FEDMCSA),以处理FL中的非IID数据,该数据采用模型组件自我注意机制来颗粒片促进不同客户之间的合作。这种机制促进了相似模型组件之间的合作,同时减少了差异很大的模型组件之间的干扰。我们进行了广泛的实验,以证明FEDMCSA在四个基准数据集上的表现优于先前的方法。此外,我们从经验上展示了模型组成部分自我发项机制的有效性,该机制与现有的个性化FL互补,可以显着提高FL的性能。
translated by 谷歌翻译
深度神经网络通过学习从低分辨率(LR)图像到高分辨率(HR)图像的映射,在图像超分辨率(SR)任务中表现出了显着的性能。但是,SR问题通常是一个不适的问题,现有方法将受到一些局限性。首先,由于可能存在许多不同的HR图像,因此SR的可能映射空间可能非常大,可以将其删除到相同的LR图像中。结果,很难直接从如此大的空间中学习有希望的SR映射。其次,通常不可避免地要开发具有极高计算成本的非常大型模型来产生有希望的SR性能。实际上,可以使用模型压缩技术通过降低模型冗余来获得紧凑的模型。然而,由于非常大的SR映射空间,现有模型压缩方法很难准确识别冗余组件。为了减轻第一个挑战,我们提出了一项双重回归学习计划,以减少可能的SR映射空间。具体而言,除了从LR到HR图像的映射外,我们还学习了一个附加的双回归映射,以估算下采样内核和重建LR图像。通过这种方式,双映射是减少可能映射空间的约束。为了应对第二项挑战,我们提出了一种轻巧的双回归压缩方法,以基于通道修剪来降低图层级别和通道级别的模型冗余。具体而言,我们首先开发了一种通道编号搜索方法,该方法将双重回归损耗最小化以确定每一层的冗余。鉴于搜索的通道编号,我们进一步利用双重回归方式来评估通道的重要性并修剪冗余。广泛的实验显示了我们方法在获得准确有效的SR模型方面的有效性。
translated by 谷歌翻译
自我监督的学习(SSL)为更好的利用未标记的数据开辟了巨大的机会。对于缺乏注释,通常已知的医学图像分析至关重要。然而,当我们尝试在SSL中使用尽可能多的未标记的医学图像时,打破维度屏障(即,使得可以共同使用2D和3D图像)成为必须的。在本文中,我们提出了一个基于学生教师范式的普遍的自我监督变压器(USST)框架,旨在利用大量未标记的医疗数据,以多种维度来学习丰富的代表。为此,我们将金字塔变压器U-NET(PTU)设计为骨干,由可切换贴片嵌入(SPE)层和变压器层组成。 SPE层根据输入维度切换到2D或3D贴片嵌入。之后,无论其原始尺寸如何,图像都被转换为序列。然后,变压器层以序列到序列方式模拟长期依赖性,从而使您能够学习来自2D和3D图像的表示。与当前维度特定的SSL相比,USST有两个明显的优点:(1)\ TextBF {更有效} - 可以从越来越多的数据中学习表示; (2)\ textBF {更多功能} - 可以传输到各种下游任务。结果表明,USST在六个2D / 3D医学图像分类和分割任务中提供了有希望的结果,表现出大量监督的想象式预训练和高级SSL对应。
translated by 谷歌翻译
在现实世界中,物体的发生频率是自然倾斜的形成长尾级分布,这导致统计上罕见的阶级的性能不佳。有希望的解决方案是挖掘尾级示例以平衡培训数据集。但是,采矿尾级示例是一个非常具有挑战性的任务。例如,由于数据中的偏差导致的类概率失真,大多数基于不确定性的挖掘方法接近斗争。在这项工作中,我们提出了一种有效,但简单的方法来克服这些挑战。我们的框架增强了Subdued Tail-Class的激活,此后,使用单级数据为中心的方法来有效地识别尾级示例。我们对三个数据集的框架进行了详尽的评估,这些数据集超过了两台计算机愿景任务。少数民族挖掘和微调模型的性能大量改善强烈证实了我们提出的解决方案的价值。
translated by 谷歌翻译
以前的纵向图像生成方法大致分为两类:2D GAN和3D感知的GAN。 2D GAN可以产生高保真肖像,但具有低视图一致性。 3D感知GaN方法可以维护查看一致性,但它们所生成的图像不是本地可编辑的。为了克服这些限制,我们提出了FENERF,一个可以生成查看一致和本地可编辑的纵向图像的3D感知生成器。我们的方法使用两个解耦潜码,以在具有共享几何体的空间对齐的3D卷中生成相应的面部语义和纹理。从这种底层3D表示中受益,FENERF可以联合渲染边界对齐的图像和语义掩码,并使用语义掩模通过GaN反转编辑3D音量。我们进一步示出了可以从广泛可用的单手套图像和语义面膜对中学习这种3D表示。此外,我们揭示了联合学习语义和纹理有助于产生更精细的几何形状。我们的实验表明FENERF在各种面部编辑任务中优于最先进的方法。
translated by 谷歌翻译
AI安全社区的一个主要目标是为现实世界应用安全可靠地生产和部署深入学习模型。为此,近年来,在生产阶段(或培训阶段)和相应的防御中,基于数据中毒基于深度神经网络(DNN)的后门攻击以及相应的防御。具有讽刺意味的是,部署阶段的后门攻击,这些攻击通常可以在不专业用户的设备中发生,因此可以说是在现实世界的情景中威胁要威胁,得以更少的关注社区。我们将这种警惕的不平衡归因于现有部署阶段后门攻击算法的弱实用性以及现实世界攻击示范的不足。为了填补空白,在这项工作中,我们研究了对DNN的部署阶段后门攻击的现实威胁。我们基于普通使用的部署阶段攻击范式 - 对抗对抗权重攻击的研究,主体选择性地修改模型权重,以将后台嵌入到部署的DNN中。为了实现现实的实用性,我们提出了第一款灰度盒和物理可实现的重量攻击算法,即替换注射,即子网替换攻击(SRA),只需要受害者模型的架构信息,并且可以支持现实世界中的物理触发器。进行了广泛的实验模拟和系统级真实的世界攻击示范。我们的结果不仅提出了所提出的攻击算法的有效性和实用性,还揭示了一种新型计算机病毒的实际风险,这些计算机病毒可能会广泛传播和悄悄地将后门注入用户设备中的DNN模型。通过我们的研究,我们要求更多地关注DNN在部署阶段的脆弱性。
translated by 谷歌翻译